Printed Pages: 4



## NEE101/NEE201

| (Following Paper ID and Ro | ll No. to be filled in your An | swer Rook) |
|----------------------------|--------------------------------|------------|
| PAPER ID: 199227           |                                | ower book) |
| Roll No.                   |                                |            |
|                            |                                |            |

## B. Tech.

## (SEM. II) THEORY EXAMINATION, 2014-15 BASIC ELECTRICAL ENGINEERING

Time: 3 Hours]

[Total Marks: 100

## SECTION - A

Attempt all parts of this question. Each part carries equal marks.

10×2=20

- (a) Define ideal voltage and current source.
  - (b) State maximum power transfer theorem.
  - (c) Define Form Factor and Peak Factor.
  - (d) A series circuit has R = 10 ohm, L = 0.02 H and C = 3  $\mu F$ . Calculate Q-factor of the circuit.
  - (e) What is the major difference between PMMC type and dynamometer type of instruments?
  - (f) Draw connection diagram for power measurement in three phase delta circuit using two wattmeter methods.
  - (g) Define MMF and write its unit.
  - (h) Draw equivalent circuit diagram of single phase transformer.
  - Draw speed torque characteristic of DC series motor.
  - Write applications of single phase induction motor.

199227]

| Attempt a | ny three questions from 2, 3, 4, 5 & 6.       | 3×10=30 |
|-----------|-----------------------------------------------|---------|
| 2 (a)     | Use superposition theorem to compute the      | 5       |
|           | current through $1/\Omega$ resistor of Fig. 1 |         |
| (b)       | Derive the delta to star transformation.      | 5       |



- 3 (a) Derive resonance conditions in series circuit. 5
  Also derive the expression for Bandwidth.
  - (b) A coil having a resistance of 30  $\Omega$  and 5 inductance of 0.05 H is connected in series with a capacitor of 100  $\mu F$  The whole circuit has been connected to a single phase 230 V, 50 Hz supply. Calculate impedance, current, power factor, power and apparent power of the circuit.
- (a) In the two wattmeter method of power measurement in a three phase circuit, the readings of the wattmeter's are 2000 W and 500 W. What is the total power and power factor of the load?
  - (b) Explain with neat diagram, working principle 5 of PMMC type electrical measuring instruments.
- 5 (a) Derive and explain the equivalent circuit of a transformer.
  - (b) Define efficiency of transformer. Find 5 condition for maximum efficiency of transformer.
- 6 (a) Why single phase induction motor is not self-starting machine? Explain it.
  - (b) Classify DC motors and write current and voltage equation for each type.

Attempt any one part from each question of this section. Each part carries equal marks.

5×10=50

10

7 (a) Use source transformation method to 10 compute the current through 6 Ω resistor of Fig. 2.



b) Determine the effective resistance between terminals A-B in the network of Fig. 3.



- 8 (a) Explain Parallel Resonance. A circuit of a resistance of  $\frac{1}{20}$   $\Omega$ , and inductance of 0.3 H and a variable capacitance in series across a 220 V, 50 Hz supply. Calculate:
  - (i) The value of capacitance to produce resonance
  - ii) The voltage across the capacitance and inductance
  - (iii) The Q-factor of the circuit.

,

199227]

5

5

5

[Contd...

3

[Contd...



- 9 Explain the principle of operation of attraction (a) 10 type of moving iron instruments. A moving coil instrument gives a full scale deflection of 30 mA when a potential difference of 70 mV is applied. Calculate the series resistance to measure 750 V on full scale.
  - Derive the relation between line and phase (b) voltage and current for a delta connected 3 phase balanced system. A balanced delta-connected load of impedance,  $Z=30 \perp 60^{\circ}\Omega$  is connected to line voltage of 440 V. Obtain the current and power supplied to load.
- 10 (a) A coil of 200 turns is wound uniformly on an 10 iron ring of mean circumference 10 cm and across sectional area 5 cm<sup>2</sup>. Current 10 Amp is flowing through coil. Relative permeability of the material is 3000. Find (i) **MMF** Magnetizing force (ii) (iii) Total flux (iv)
  - Reluctance. Derive the emf equation of a single phase transformer. (b) A single phase 100 kVA, 6.6 kV/230 V, 50 Hz transformer has 90% efficiency at .8 lagging power factor both at full load and also at half load. Determine iron and copper loss at full load for transformer.
- (a) (i) Draw and explain the torque-slip 10 characteristics of a three phase induction motor.
  - Explain working principle of synchronous (ii) motor and two applications.
  - **(b)** Find Torque equation of a dc Motor. (i) 10 (ii)
    - Explain the principle of operation of an Alternator.